How to test whether the change among surveys in one group is equal to the change in the other groups?
1. Scenery
We have a table below:
| NHES (S1) | N I (S2) | (S3) | (S4) | N IV (S5) | Change (C) |
BMI Group | High Cholesterol (%> 240 mg/dl) | |||||
< style=""> (G1) | 27.1 | 22.3 | 22.1 | 13.8 | 15.2 | -11.9 (C1) |
25.0 – (G2) | 39.2 | 33.1 | 31.2 | 23.3 | 18.7 | -20.5 (C2) |
> 30 (G3) | 38.9 | 33.1 | 31.5 | 23.0 | 17.9 | -21.0 (C3) |
Age and sex-adjusted trends in CVD risk factors, by level of obesity and survey year in the
We want to know: Ho: C1 = C3.
2. Algorithm Solution
Recall:
Y= α*(S5, G1) + β1*(S1) + β2*(S2) + β3*(S3) + β4*(S4) + β5*(G2) + β6*(G3)
+ β7*(S1, G2) + β8* (S1, G3) + β9*(S2, G2) + β10*(S2, G3) + β11*(S3, G2)
+ β12*(S3, G3) + β13*(S3, G2) + β14*(S3, G3)
And: Prevalence of high cholesterol in NHES (S1) among persons with normal BMI (G1)
[S1-G1] = α + β1 = 27.1, and
[S5-G1] = α = 15.2, then
C1 = [S5-G1] - [S1-G1] = 15.2 – 27.1 = -11.9
Also:
[S1-G3] = α + β1 + β6 + β8 = 38.9, and
[S5-G3] = α + β6 = 17.9, then
C3 = [S5-G3] - [S1-G3] = -21.0
So:
When we test whether C1 = C3, we are going to test:
α - (α + β1) = (α + β6) – (α + β1 + β6 + β8),
i.e. β8 = 0
Same for others:
To test C1 = C2, we are going to test, β7 = 0
3. Implementation
Using PROC RLOGIST:
proc rlogist data= all;
nest survey3 strata3 psu3/psulev=3 MISSUNIT;
weight mecwgt3;
subpopn age >19;
subgroup bmigrp agegrp sex survey3 WHITE BMIADHOC;
levels 3 3 2 5 2 2;
model High_chol = bmigrp agegrp sex survey3 bmigrp*survey3;
reflevel survey3 =5 agegrp =1 bmigrp=1;
pred_eff bmigrp=(1,0,0)*survey3=(1,0,0,0,-1) /name="Survey: first versus last in BMI<25";
pred_eff bmigrp=(0,1,0)*survey3=(1,0,0,0,-1)/name="Survey: first versus last in 25<BMI<30";
pred_eff bmigrp=(0,0,1)*survey3=(1,0,0,0,-1)/name="Survey: first versus last in BMI>30";
PREDMARG BMIGRP SURVEY3 BMIGRP*SURVEY3;
PRINT BETA P_BETA PREDMRG SEPRDMRG P_PMCON PRMGCON SEPMCON
/PREDMRGFMT=f7.3 PRMGCONFMT=F7.3 SEPMCONFMT=F7.3;
RUN;
SUDAAN will give us these beta and p value for beta:
-------------------------------
variable beta p value
-------------------------------
BMIGRP,
BY NHES & NHANES
1, 1 0.00 .
1, 2 0.00 .
1, 3 0.00 .
1, 4 0.00 .
1, 5 0.00 .
2, 1 0.33 0.0483 <- b=""> ->ß7
2, 2 0.32 0.0414
2, 3 0.24 0.1284
2, 4 0.41 0.0130
2, 5 0.00 .
3, 1 0.37 0.0181 <- b=""> ->ß8
3, 2 0.38 0.0156
3, 3 0.30 0.0350
3, 4 0.44 0.0021
3, 5 0.00 .
----------------------------------
No comments:
Post a Comment